nNOS deficiency-induced cell proliferation depletes the neurogenic reserve.

نویسنده

  • Gerburg Keilhoff
چکیده

The consequences of nitric oxide synthase (NOS) gene knockout on proliferation, survival and differentiation of neuronal precursors in the subgranular (SGZ) and subventricular (SVZ) zones were analyzed. Comparative studies were performed in neonatal, adult and old (18-month) wild-type (WT), nNOS, eNOS, and iNOS knockout (KO) mice. Effects on brain cell proliferation were studied by sacrificing animals at 24h after injecting BrdU, while effects on survival and differentiation of dividing brain cells were studied by sacrificing other animals at three weeks after injections and double immunostaining with cell phenotype-specific antibodies. In the neonatal SGZ, cell proliferation was higher than at any other age, with a significantly decreased level in eNOS-KO mice. In the neonatal SVZ, cell proliferation in each of the three NOS-KO strains was significantly lower than in WT. In the adult, in both the SGZ and SVZ, all strains showed lower levels of cell proliferation than in neonates. Thereby, the significant highest cell proliferation was found in the SGZ and SVZ of nNOS-KO mice. In the SGZ and SVZ of old mice, in each strain, BrdU-positive cell counts were further reduced from adult levels, whereby cell proliferation of nNOS-KO mice attained the most massive reduction (in the SGZ almost to zero). In adult animals sacrificed 21 days after BrdU injections, values of BrdU-/NeuN-positive cells in all knockout animals were the same as WT, indicating that the initial cell proliferation changes were not sustained or translated into neuronal differentiation. The effect of nNOS-KO, inducing cell proliferation only temporarily, consists with the concept that neuronal stem cells have a finite proliferation capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Neuronal nitric oxide synthase is a SHP-1 substrate involved in sst2 somatostatin receptor growth inhibitory signaling

Somatostatin receptor sst2 is an inhibitory G protein-coupled receptor, which inhibits normal and tumor cell growth by a mechanism involving the tyrosine phosphatase SHP-1. We reported previously that SHP-1 associates transiently with and is activated by sst2 and is a critical component for sst2 growth inhibitory signaling. Here, we demonstrate that in Chinese hamster ovary cells expressing sst...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Loss of nNOS inhibits compensatory muscle hypertrophy and exacerbates inflammation and eccentric contraction-induced damage in mdx mice.

Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSβ, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSβ and use mdx mice engineered to lack n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 505 3  شماره 

صفحات  -

تاریخ انتشار 2011